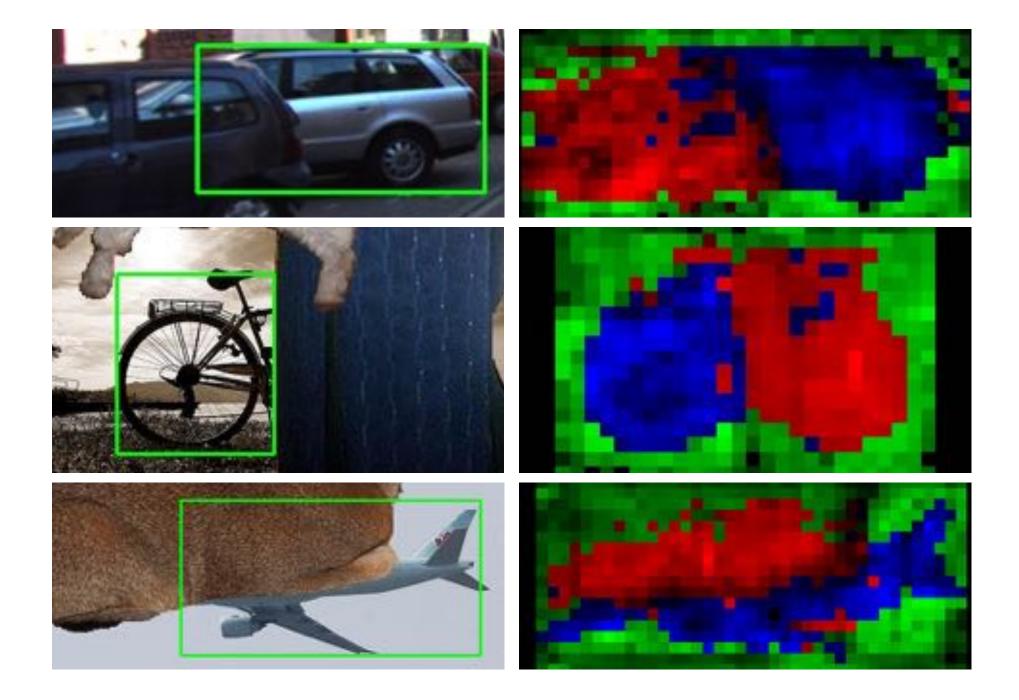
Amodal Segmentation through Out-of-Task and Out-of-Distribution Generalization with a Bayesian Model Yihong Sun, Adam Kortylewski, Alan Yuille Johns Hopkins University

Introduction

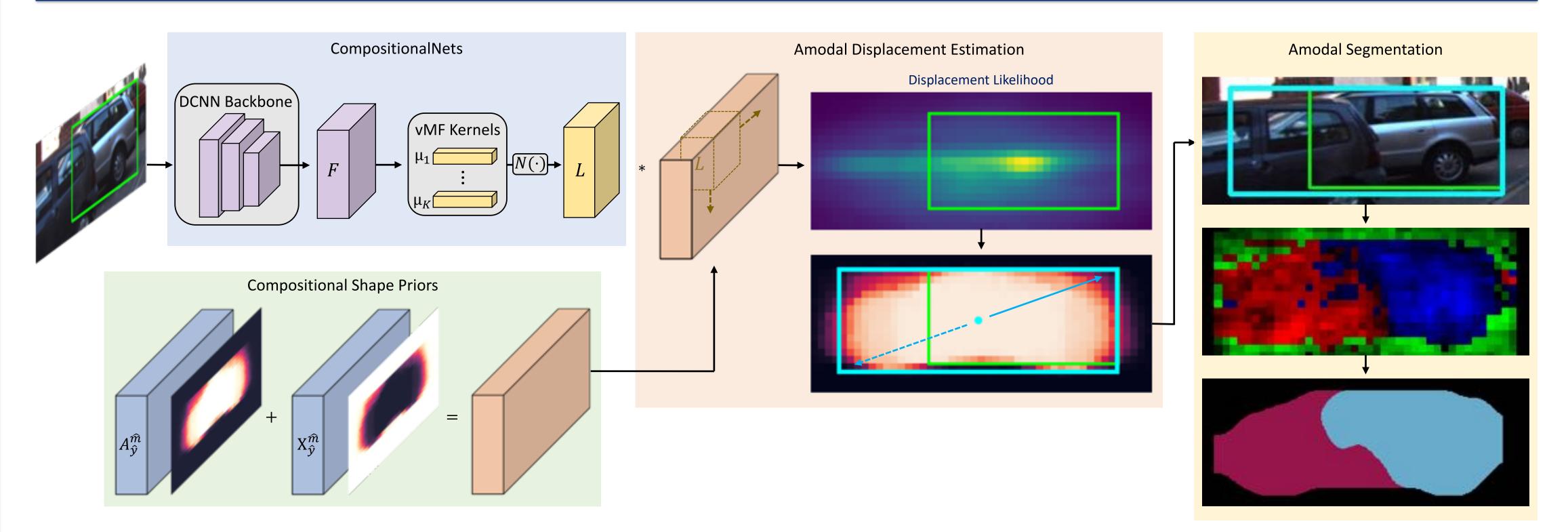
- Amodal completion is a visual task that segment those object boundaries which are occluded and hence invisible.
- The task is particularly challenging for deep neural networks since data is difficult to obtain and annotate.



Contributions

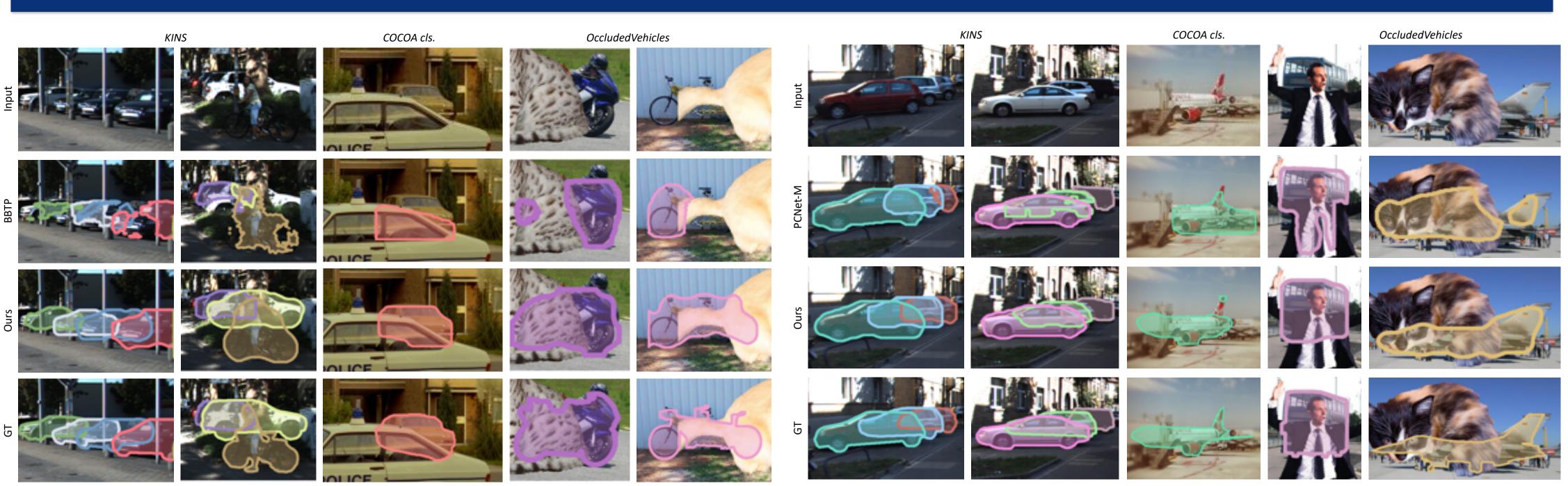
- We formulate amodal instance segmentation as an out-of-task and out-of-distribution generalization problem with a Bayesian generative model.
- Our Bayesian model is learned from unoccluded objects with bounding box and class labels only.
- To the best of our knowledge, our model is first to generalize to previously unseen occluders for amodal segmentation.

Methods



Model Pipeline. Input image and the proposed region is given as input for amodal segmentation,

Results



Qualitative Results are shown with known (left) and unknown (right) object center.

Conclusions

Amodal Segmentation on KINS										
Methods	k. c	superv.	FG-0	FG-1	FG-2	FG-3	Mean			
PCNet-M	X	mask	75.3	65.5	52.9	33.5	56.8			
Ours-ML	X	box	69.2	68.7	62.7	45.2	61.5			
Ours-E2E	X	box	69.9	68.1	63.2	47.3	62.1			
BBTP	✓	box	77	68.3	58.9	53.9	64.5			
Ours-ML	1	box	71.8	70.1	66.2	57.8	66.5			
Ours-E2E	1	box	72.3	69.6	66.2	58.5	66.7			

Amodal Segmentation on COCOA cls.										
Methods	k. c	superv.	FG-0	FG-1	FG-2	FG-3	Mean			
PCNet-M	X	mask	56.8	53.6	47	38.4	49			
Ours-ML	X	box	61.1	62	60	54.3	59.4			
Ours-E2E	×	box	58.3	59.8	58.6	53.5	57.6			
BBTP	✓	box	57.3	49.4	40.7	35	45.6			
Ours-ML	1	box	65	64.2	64.2	60.9	63.6			
Ours-E2E	1	box	65.3	65	64.3	61.4	64			

- Amodal segmentation is evaluated on KINS and COCOA cls. where meanIoU is used as evaluation metric
- Our model outperforms alternative weaklysupervised methods (BBTP) by a large margin and even outperforms supervised methods (PCNet-M) when the amount of occlusion is large.

Acknowledgements

• We gratefully acknowledge funding support from Office of Naval Research (N00014-21-1-2812) and National Science Foundation (BCS-1827427).