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Quantitative Results
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* Depth performance with semantic split on the nuScenes (N) and Waymo
Open (W) Dataset. S.B., S.0. and M.O. denotes the pixels that are static
background, static moveable object and moving object, respectively.
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- Overview. We compose the 3D rigid flow F'r and 3D independent flow F'y to reconstruct target frame I .

Conclusions

Compared to Monodepth2 [1] and Litemono [2], from which we adopt our
depth network from, our proposed Dynamo-Depth

Qualitative Results

-

1) outperforms respective baselines across all metrics on Waymo Open

Input Frames and nuScenes;

Monocular Depth Rigid Flow Monocular Depth Rigid Flow Independent Flow =
écg 2) significantly improves depth performance on the moving objects;
Contributions g 3) and accurately estimates the 3D independent motion field and motion
2 segmentation.
* We propose Dynamo-Depth for learning depth, camera ego-motion, 3D independent %
flow, and motion segmentation for dynamic scenes solely from unlabeled videos. = References
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* We learn an early estimation of motion segmentation to explicitly disentangle
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